Qt Signal Slot Not Called

Qt Signal Slot Not Called Average ratng: 3,6/5 1438 votes

Build complex application behaviours using signals and slots, and override widget event handling with custom events.

As already described, every interaction the user has with a Qt application causes an Event. There are multiple types of event, each representing a difference type of interaction — e.g. mouse or keyboard events.

A slot that is attached to that signal is called when the clicked signal is emitted. Multiple signals can be connected to any slot. Signals can be connected to any number of slots. Most of the details of signals and slots are hidden in their implementation in Qt. At this stage of the tutorial series we do not look in depth at signals and slots. All the information (slot to call, parameter values.) are stored inside the event. Copying the parameters. The argv coming from the signal is an array of pointers to the arguments. The problem is that these pointers point to the stack of the signal where the arguments are. Once the signal returns, they will not be valid anymore. Nd the index of the signal and of the slot Keep in an internal map which signal is connected to what slots When emitting a signal, QMetaObject::activate is called. It calls qt metacall (generated by moc) with the slot index which call the actual slot. In the function FunctionPointer::call, the args0 is meant to receive the return value of the slot. If the signal returns a value, it is a pointer to an object of the return type of the signal, else, it is 0. If the slot returns a value, we need to copy it in arg0. If it returns void, we do nothing.

Events that occur are passed to the event-specific handler on the widget where the interaction occurred. For example, clicking on a widget will cause a QMouseEvent to be sent to the .mousePressEvent event handler on the widget. This handler can interrogate the event to find out information, such as what triggered the event and where specifically it occurred.

You can intercept events by subclassing and overriding the handler function on the class, as you would for any other function. You can choose to filter, modify, or ignore events, passing them through to the normal handler for the event by calling the parent class function with super().

However, imagine you want to catch an event on 20 different buttons. Subclassing like this now becomes an incredibly tedious way of catching, interpreting and handling these events.

Qt Signal Slot Not Called Money

python

Thankfully Qt offers a neater approach to receiving notification of things happening in your application: Signals.

Signals

Instead of intercepting raw events, signals allow you to 'listen' for notifications of specific occurrences within your application. While these can be similar to events — a click on a button — they can also be more nuanced — updated text in a box. Data can also be sent alongside a signal - so as well as being notified of the updated text you can also receive it.

The receivers of signals are called Slots in Qt terminology. A number of standard slots are provided on Qt classes to allow you to wire together different parts of your application. However, you can also use any Python function as a slot, and therefore receive the message yourself.

Load up a fresh copy of `MyApp_window.py` and save it under a new name for this section. The code is copied below if you don't have it yet.

Basic signals

First, let's look at the signals available for our QMainWindow. You can find this information in the Qt documentation. Scroll down to the Signals section to see the signals implemented for this class.

Qt 5 Documentation — QMainWindow Signals

As you can see, alongside the two QMainWindow signals, there are 4 signals inherited from QWidget and 2 signals inherited from Object. If you click through to the QWidget signal documentation you can see a .windowTitleChanged signal implemented here. Next we'll demonstrate that signal within our application.

Qt 5 Documentation — Widget Signals

The code below gives a few examples of using the windowTitleChanged signal.

python

Try commenting out the different signals and seeing the effect on what the slot prints.

We start by creating a function that will behave as a ‘slot’ for our signals.

Then we use .connect on the .windowTitleChanged signal. We pass the function that we want to be called with the signal data. In this case the signal sends a string, containing the new window title.

If we run that, we see that we receive the notification that the window title has changed.

Events

Next, let’s take a quick look at events. Thanks to signals, for most purposes you can happily avoid using events in Qt, but it’s important to understand how they work for when they are necessary.

As an example, we're going to intercept the .contextMenuEvent on QMainWindow. This event is fired whenever a context menu is about to be shown, and is passed a single value event of type QContextMenuEvent.

Slot

To intercept the event, we simply override the object method with our new method of the same name. So in this case we can create a method on our MainWindow subclass with the name contextMenuEvent and it will receive all events of this type.

If you add the above method to your MainWindow class and run your program you will discover that right-clicking in your window now displays the message in the print statement.

Sometimes you may wish to intercept an event, yet still trigger the default (parent) event handler. You can do this by calling the event handler on the parent class using super as normal for Python class methods.

python

This allows you to propagate events up the object hierarchy, handling only those parts of an event handler that you wish.

However, in Qt there is another type of event hierarchy, constructed around the UI relationships. Widgets that are added to a layout, within another widget, may opt to pass their events to their UI parent. In complex widgets with multiple sub-elements this can allow for delegation of event handling to the containing widget for certain events.

However, if you have dealt with an event and do not want it to propagate in this way you can flag this by calling .accept() on the event.

Alternatively, if you do want it to propagate calling .ignore() will achieve this.

python

Qt Signal Slot Not Called The Day

In this section we've covered signals, slots and events. We've demonstratedsome simple signals, including how to pass less and more data using lambdas.We've created custom signals, and shown how to intercept events, pass onevent handling and use .accept() and .ignore() to hide/show eventsto the UI-parent widget. In the next section we will go on to takea look at two common features of the GUI — toolbars and menus.

Example

Some times you see a signal is emitted in sender thread but connected slot doesn't called (in other words it doesn't receive signal), you have asked about it and finaly got that the connection type Qt::DirectConnection would fix it, so the problem found and everything is ok.

But generaly this is bad idea to use Qt:DirectConnection until you really know what is this and there is no other way. Lets explain it more, Each thread created by Qt (including main thread and new threads created by QThread) have Event loop, the event loop is responsible for receiving signals and call aproporiate slots in its thread. Generaly executing a blocking operation inside an slot is bad practice, because it blocks the event loop of that threads so no other slots would be called.

If you block an event loop (by making very time consuming or blocking operation) you will not receive events on that thread until the event loop will be unblocked. If the blocking operation, blocks the event loop forever (such as busy while), the slots could never be called.

In this situation you may set the connection type in connect to Qt::DirectConnection, now the slots will be called even the event loop is blocked. so how this could make broke everything? In Qt::DirectConnection Slots will be called in emiter threads, and not receiver threads and it can broke data synchronizations and ran into other problems. So never use Qt::DirectConnection unless you know what are you doing. If your problem will be solved by using Qt::DirectConnection, you have to carefull and look at your code and finding out why your event loop is blocked. Its not a good idea to block the event loop and its not recomended in Qt.

Qt Signal Emitted But Slot Not Called

Here is small example which shows the problem, as you can see the nonBlockingSlot would be called even the blockingSlot blocked event loop with while(1) which indicates bad coding



Qt Signal Slot Not Called Two

Signal
Related Tags